Multi-sided implicit surfacing with I-patches

Agoston Sipos, Tamás Várady, Péter Salvi, Márton Vaitkus

Budapest University of Technology and Economics

SMI 2020

June 2-4

Outline

- 1 Introduction
 - Motivation
 - Previous work
- 2 I-patch
- 3 Constructing I-patches
 - Boundary curves
 - Primary & bounding surfaces
 - Adjusting the interior
- 4 Applications
- 5 Conclusion

Implicit multi-sided patches

- Multi-sided surfaces used in many areas
 - Design
 - Hole filling & Vertex blending
- \blacksquare Exact representations \rightarrow
 - explicit shape control
 - watertight connections
- Generally n-sided parametric patches
- An interesting alternative: implicit patches
 - Easy inside-outside testing
 - Boolean operations
 - Efficient raytracing
 - Connect to regular implicit surfaces

Previous work

- Bajaj and Ihm (1992)
 - Fitting implicit surfaces based on boundary conditions
 - Handling point, curve and normal constraints
- Li et al. (1990), Hartmann (2001)
 - Functional splines multi-sided blends
 - Originally used for convex roundings
 - Later generalized for more complex blends
- Warren (1989) Algebraic blends
- Rockwood (1989) Displacement blending
- Gourmel et al. (2013) Gradient-based blending

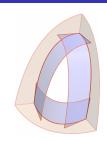
I-patch

- Original publication:
 - T. Várady, P. Benkő, G. Kós, A. Rockwood Implicit surfaces revisited—I-patches. Geometric Modelling, Springer, Vienna, pp. 323-335, 2001.
- Current research: analyze basic scheme, distance-based formula, consistent ribbon orientation, special constructions, handling special cases

- $\{P_i(x, y, z) = 0\}$ implicit primary surfaces, $\{B_i(x, y, z) = 0\}$ implicit bounding surfaces
- $P_i \cap B_i \Rightarrow i^{\text{th}}$ boundary

•
$$I = \sum_{i=1}^{n} \left(w_i P_i \prod_{j \neq i} B_j^{k+1} \right) + w \prod_{i=1}^{n} B_i^{k+1}$$

- Patch: $\{I(x, y, z) = 0\}$
- k: degree of continuity
- Free parameters: $w_i, w \in \mathbb{R}$

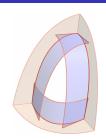


Example

3-sided G^1 l-patch:

$$w_1 P_1 B_2^2 B_3^2 + w_2 P_2 B_1^2 B_3^2 + w_3 P_3 B_1^2 B_2^2 + w B_1^2 B_2^2 B_3^2 = 0$$

- On boundary #i, $P_i(x, y, z) = 0$ and $B_i(x, y, z) = 0 \Rightarrow I(x, y, z) = 0$
- On boundary #i, $I = P_i G + B_i^2 H$ $(G, H : \mathbb{R}^3 \to \mathbb{R}) \Rightarrow \nabla I = const \cdot \nabla P_i$



Additional properties

$$I = \sum_{i=1}^{n} \left(w_i P_i \prod_{j \neq i} B_j^{k+1} \right) + w \prod_{i=1}^{n} B_i^{k+1}, \ w_i, w \in \mathbb{R}$$

- Interior C^{∞}
- G^k continuity to all P_i -s along the border
 - B_i -s derivatives do not affect $I^{(m)}$, $m \le k$ on the boundary because of k+1 exponent
- Coincident bounding surfaces: slightly modified equation

Distance-based formulation

Alternative "rational" form of I-patches

$$I = \sum_{i=1}^{n} \frac{w_i P_i}{B_i^{k+1}} + w$$

- a sum of weighted algebraic distances
- Unstable in the vicinity of the boundaries

• near the
$$i^{\text{th}}$$
 border: $I = P_i + \sum_{j \neq i} \left(\frac{w_j P_j}{B_j^{k+1}} + w \right) \cdot \frac{B_i^{k+1}}{w_i}$

- Useful for proving properties and setting the ribbon weights
 - I-patch touching three orthogonal elliptic cylinders reproduces an ellipsoid (see paper)

Constructing I-patches

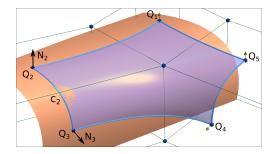
Boundary curves

- Input: corner points (Q_i) and tangent planes (implicit function: π_i)
- Boundary curves: smoothly connect corners
- Curves with implicit representation needed
 - If feasible, conics
 - Otherwise I-segments (2D implicit curves)

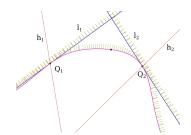
Primary & bounding surfaces

Implicit ribbons (primaries)

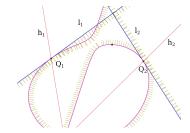
- Interpolate boundary curves (here $Q_2 Q_3$)
- Consistent orientation with corner normals.
- Common ribbon $\rightarrow G^1$ continuity between adjacent patches



Orienting ribbons



- Correct patch consistent normal fence
- Positive half-spaces of the ribbons oriented accordingly
- 2D examples:

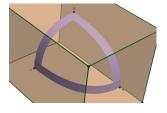


Implicit ribbons (primaries)

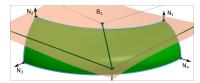
- Basic idea: Liming ribbon
- Quadratic equation combining the tangential planes and a cutting plane

$$(1-\lambda_i)\pi_i\pi_{i+1}-\lambda_i\tilde{\pi}_i^2$$

 \blacksquare I-segment boundary \rightarrow I-patch ribbon $w_{i,1}\pi_i\mu_{i+1}^2 + w_{i,2}\pi_{i+1}\mu_i^2 +$ $w_{i,0}\mu_i^2\mu_{i+1}^2$ (μ -s: local bounding planes)



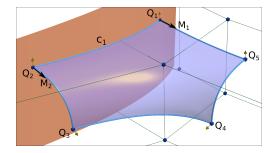
Applications



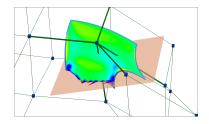
Primary & bounding surfaces

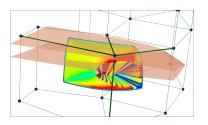
Implicit bounding surfaces

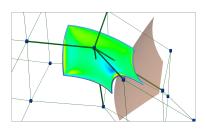
- Interpolate the boundary curve (here $Q_1 Q_2$)
- Determines a half-space, where the I-patch is located
- Should not span a small angle with its ribbon

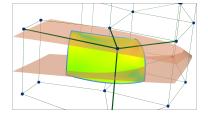


Detect & fix incorrect components





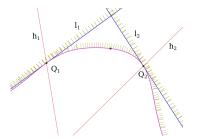


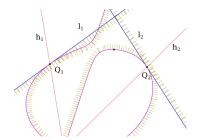


Adjusting the interior

Scalar weights

- Weights (w_i) to adjust "fullness"
- E.g.: point approximation, fairing
 - Sign must not change (flips normal)





Adjusting the interior

Default weights

Our heuristics: pick a reference point (R) in the middle and set each weighted algebraic distance equal

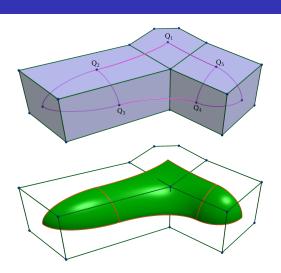
$$d_i = \frac{w_i P_i(\mathsf{R})}{B_i^2(\mathsf{R})}, \ d_i = d_j, \quad (i, j = 1, \dots, n)$$

- Works well with good quality algebraic distance fields
- When needed manual setting or automatic smoothing

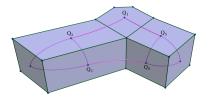
Applications

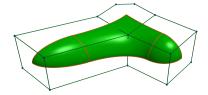
Polyhedral design

- Input: a control polyhedron
- Output: a smoothly connected composite surface of l-patches

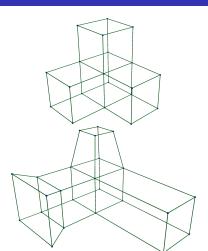


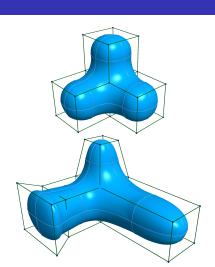
- Curve network
 - smoothly connects the centroids of the faces
 - a dual structure
- Ribbons
 - created exclusively from the polyhedron
 - G¹ connection automatically guaranteed



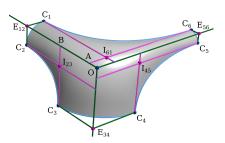


Polyhedral design



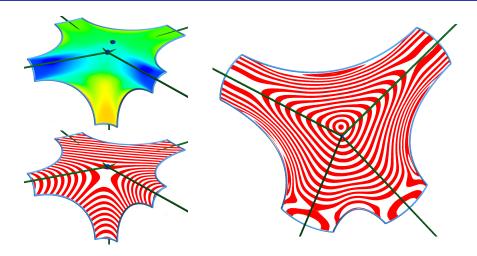


Setback vertex blending



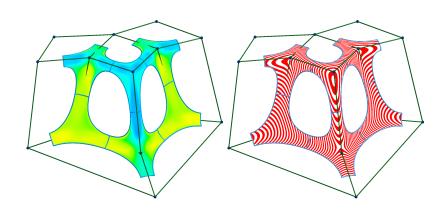
- Input: a vertex with blended edges defined by radii and setbacks
- Output: a multi-sided I-patch, connecting edge blends and primary faces
- Boundary loop an alternating sequence of
 - profile curves (terminate blends)
 - and spring curves (attached to primary faces)

Setback vertex blending



00000

Setback vertex blending



Summary

Building surfaces from I-patches

- Creating control data
- Creating primary and bounding surfaces
- Adjusting the surfaces

Applications

- Polyhedral design
- Setback vertex blends

Thank you for your attention.